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1 Introduction 

A phased-array weather radar has been constructed at NSSL 
Norman Oklahoma. This establishes the first National 
Weather Radar Testbed (NWRT) equipped with the state-of-
the-art (solid-state) phased-array antenna (Forsyth et al. 
2005). An important and yet very challenging research goal 
is to optimally design and utilize the electronically-
controlled agile beam scans for meteorological applications, 
such as assimilating phased-array radar observations to 
improve numerical analysis and prediction of severe storms 
and other hazardous weather conditions. This paper reports 
our recent research progress in this direction with particular 
attentions to the following important issues: (i) how to 
design phased-array scan strategies to enhance radar 
observation information content for data assimilation; (ii) 
how to take the advantages of phased-array rapid and 
flexible scan capabilities to improve error covariance 
estimation for radar data assimilation. These issues will be 
addressed theoretically, and some practical solutions will be 
proposed and demonstrated by numerical experiments. 

2 Information content extracted from observations 

When observations are assimilated into a numerical weather 
prediction (NWP) model by an optimal analysis system, the 
background state, denoted by vector b, is provided by the 
prediction of the NWP model. The background probability 
density function (pdf), denoted by q(x), is assumed to be 
Gaussian with a pre-estimated or predicted covariance matrix 
B. The information content from the observations can be 
measured by the relative entropy defined by R(p, q) = 

∫dxp(x)ln[p(x)/q(x)], where p(x) is the analysis pdf and x is 
the state vector. For Gaussian pdfs, this gives 

  R(p, q) = (a - b)TB-1(a - b)/2 + [ln|G| + Tr(G-1) - n]/2,    (1) 

where a is the analysis mean, ( )T denotes the transpose of ( ), 
|G| is the determinant of G = B1/2A-1B1/2, A is the analysis 
covariance matrix, Tr( ) denotes the trace of ( ), and n is the 
dimension of b. The first and second terms on the right-hand 
side of (1) are the signal and dispersion parts of the 
information content, respectively (Majda et al. 2002). The 
above results lead to the following two points: 

(a) The information content extracted from observations by 
an optimal analysis can be measured only indirectly in terms 
of the innovation (defined by a – b) and pdf changes (from q 
to p) produced by the analysis, so the information content 
depends on both the observation and background pdfs. 

(b) Since the relative entropy is invariant with respect to 
smooth invertible variable transformations, the information 
content measured by (1) is invariant when the Gaussian pdfs 
are transformed to non-Gaussian or vice versa. 

Note that A is related to B by A-1 = B-1 + HTR-1H or, 
equivalently, A = B - BHT(HBHT + R)-1HB, where R is the 
observation error covariance matrix and H is the tangent-
linearization of the observation operator H( ) at x = b. 
Substituting these relationships into (1) gives 

  R(p, q) = ∑[di
2λi

2/(1+λ i
2) 2 + ln(1+λ i

2) - λ i
2/(1+λ i

2)]/2.  (2)   (4.1) 

Here, di is the i-th element of d = UTR-1/2[y - H(b)]; y is the 
observation vector; U is the left orthogonal matrix given by 
the singular value decomposition (SVD) of the scaled 
observation operator: M = R-1//2HB1/2 = UΛVT; λi is the i-th 
diagonal element of the diagonal matrix Λ; and the 
summation is over i from 1 to r = rank(M). In (2), the 
observation space is transformed by UTR-1/2. In this 
transformed observation space, the information content 
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becomes separable between components associated with 
different singular values of M. Based on this understanding, 
two additional points can be made as follows:  

(c) Observations can be compressed into surper-observations 
by applying the truncated transformation IsUTR-1/2 to y. The 
super-observation vector is given by ys = IsUTR-1/2y, where Is 
is the s×s identity matrix that projects Rm onto Rs (s < m) and 
m is the dimension of y. This compression causes no 
information loss as long as s ≥ r = rank(M).  

(d) If ys = IsUTR-1/2y is further truncated to s < r, then the 
compression will cause an information loss. The dispersion 
part of the information loss caused by the SVD-based 
compression is the minimum loss for a given truncation 
number s (< r). The signal part of the information loss 
depends on the truncated non-zero singular values and 
associated components of d.  

Denote by n’ the dimension of the subspace in which the 
model state vector is affected by the observations through the 
analysis. If the background resolution is much coarser than 
the radar observations and the background covariance is 
local or localized (nonzero only within a certain range of 
spatial separation), then r ≤ n’ << m and there can be 
considerable information redundancies (quantified by the 
dimension of the null space of M, that is, m - r). Redundant 
observations impose unnecessary computational burdens on 
the analysis system and can also cause the analysis ill 
conditioned. Redundant radar observations can be 
compressed based on the SVD of M as in (c)-(d). This 
compression can be efficient only if observations are 
assimilated serially in small batches with the background 
covariance updated also serially by using a Kalman filter. If 
the observations are analyzed in a single batch without 
updating the background covariance as in most operational 
data assimilations, then the observation space will be too 
large to implement the SVD-based compression unless the 
compression is localized with an additional information loss.  

With the phased-array radar, the flexible agile-beam allows 
adaptive scan strategies to reduce or eliminate information 
redundancy and thus enhance the information content. The 
relative entropy in (2) can be used to measure the optimality 
of radar scanning strategy in terms of maximizing the 
information content from observations for a given data 
assimilation system. This problem is examined with 
idealized observations and background fields in simple one-
dimensional settings. The results (not shown) suggest that 
the operational WSR-88D radar scans may have excessive 
spatial resolutions (0.25 km in radial range and about 1o in 
azimuthal) in radial-velocity observations even for a storm-
scale data assimilation system with a horizontal resolution of 
Δx = 2 km. The rapid and flexible agile-beam scans from the 
phased-array radar can be configured to properly reduce the 
spatial resolutions and enhance the temporal resolution 
and/or measurement accuracy (by repeated and uncorrelated 
sampling). Trade-offs between the spatial resolution, 
temporal resolution and measurement accuracy will be 
examined in the next section by performing observing 
system simulation experiments (OSSEs) with an ensemble 
Kalman filter (EnKF). 

3 Assimilation experiments with simulated radar scans 

The assimilation system used in this study is the same as in 
Tong and Xue (2005, referred to as TX05 hereafter) except 
that it uses the ensemble square-root Kalman filter (Whitaker 
and Hamill 2002). As in TX05, the Advanced Regional 
Prediction System (ARPS, Xue et al. 2003) is used to 
generate the “true” fields for a classic supercell storm case. 
The physical domain is 64×64×16 km3. For the assimilation 
and forecast runs, the model grid comprises 35×35×35 points 
with grid resolutions of 2 km in the horizontal directions and 
0.5 km in the vertical. However, unlike in TX05, the “truth” 
fields are generated by simulations on a 131×131×35 grid 
with the horizontal resolution enhanced to 0.5 km, so the 
model is not perfect here. During the truth simulation, the 
initial convective cell strengthens over the first 20 min and 
then splits into two at around 55 min. The updraft of the 
right-moving cell reaches a peak value of 45 ms−1 at 90 min, 
while the left-moving cell starts to split again at t = 95 min. 
The evolution is roughly the same as shown in Fig. 1 of 
TX05.  

Radial-velocity observations are sampled from the “true” 
fields in precipitation regions (with reflectivity > 10 dBZ) to 
simulate phased-array radar scans in four different modes: 

Mode-1: 5 min per volume scan with spatial resolutions of 
0.25 km in radial range and 1o in azimuthal on 14 tilts with 
elevation angles of 0.48, 1.45, 2.4, 3.3, 4.3, 5.2, 6.2, 7.5, 8.7, 
10.0, 12, 14.0, 16.7 and 19.5 degree. Observation errors are 
assumed to be uncorrelated (or de-correlated) with a standard 
deviation of σo = 4 ms−1 (as estimated in section 4). 

Mode-2: As mode-1, but the observations are thinned in 
radial range with the range resolution increased to 1 km. 

Mode-3: As mode-1, except that the spatial resolutions are 2 
km in radial range and 2o in azimuthal. Here, the range 
resolution is reduced 16 times and each observation is 
produced by 16 times as many individual measurements as 
those in mode-1, so the error variance is reduced 16 times. 
This gives σo = 1 ms−1. 

Mode-4: 2 min per volume scan with spatial resolutions of 2 
km in radial range and 2o in azimuthal on the same tilts as in 
mode-1. Here, the spatial resolution is reduced 16 times but 
the temporal resolution is increased by 2.5 times, so the error 
variance is reduced 6.4 times and σo = 1.58 ms−1. 

The assimilation starts at t = 25 min and ends at 100 min, 
and 40 ensemble members are used. The rms errors of 
ensemble mean forecasts and analyses are plotted in Fig. 1 
for each scan mode. The drops in the error curves at specific 
times correspond to the error reductions produced by the 
analyses. The error curves for model-1 and model-2 are very 
close to each other, so model-1 has excessive spatial 
resolutions. When the scan mode-1 changes to mode-3, and 
then to mode-4, the rms errors are reduced progressively. 
Note that the scan mode-1, mode-3 and mode-4 require 
essentially the same amount of measurement capabilities but 
they impact the analyses and predictions differently. Thus, it 



is possible to design an optimal or nearly optimal scan 
strategy with proper trade-offs between the spatial 
resolution, temporal resolution and measurement accuracy.  

  
 
Fig. 1. The rms errors of the ensemble-mean forecast and analysis, 
averaged over points at which the reflectivity is greater than 10 dBZ 
for (a) u and (b) w. The black, red, green, and blue curves are for 
scan mode-1, mode-2, mode-3 and mode-4, respectively. The drops 
in the error curves at specific times correspond to the reduction of 
error by analysis.  

4 Radar wind observation error estimation 

As shown in section 2, the information content from 
observations depends on the observation and background 
pdfs. An optimal analysis system can produce truly optimal 
analyses only if the observation and background error 
statistics are accurately estimated to represent the true 
uncertainties described by their pdfs (or joint pdf if they are 
correlated). It is thus necessary and important to estimate 
these error statistics as accurately as possible. To this end, 
the method of Xu and Wei (2001) was modified to estimate 
the observation and background error statistics from radar 
radial-velocity innovations (Xu et al. 2003, henceforth 
referred to as X03). The method was used to estimate the 
phased-array radar wind observation error variance and 
background wind error covariance (Xu et al. 2005, 
henceforth referred to as X05). The phased-array radar data 
were collected on 2 June 2004 when a squall line moved 
southeastward through the central Oklahoma area in the 140 
km radial range of the radar scans (Fig. 1 of X05). The 
background data were provided by the Coupled 
Ocean/Atmosphere Mesoscale Prediction System 
(COAMPS®, Hodur 1997). These data will be used here with 
a refined method.  

The refined method uses the radial-velocity correlation 
function based on (2.6) of Xu and Gong (2003):  

 Rvr(xi, xj) = [(Rll + Rtt)cos(βi - βj) + (Rll - Rtt)cos(βi + βj)]/2. (3) 

Here, xi and xj are the coordinates of two correlated points 
with respect to the radar; Rll = Rll(r) and Rtt = Rtt(r) are the 
correlation functions for the longitudinal- and transverse-
component velocities with respect to r = xj - xi, respectively; 
r = |r|; and βi (or βj) is the angle of vector xi (or xj) with 
respect to xj - xi. In X05, (3) was used to model the 
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background error correlation function Rb, while Rll(r) and 
Rtt(r) were expressed by truncated spectral expansions with 
the correlation range set to D = Db = 160 km [see (4.1) of Xu 
and Wei 2001]. The refined method makes a further use of 
(3) to model the observation error correlation function Ro by 
setting the correlation range to D = Do = 3 km (based on the 
innovation correlation computed below).  

The innovation correlation is computed by <didj>, where di is 
the bias-removed and normalized radial-velocity innovation 
(observation minus background) at the i-th observation point 
xi and < > denotes the statistical mean (computed from time 
series). The innovation correlation can be partitioned into 
 
           sb

2Rb for Db > r ≥ Do = 3 km  
  <didj> =  
             sb

2Rb + so
2Ro

   
for Do > r ≥ 0,        (4)  

where sb
 = σb/σd, so

 = σo/σd, σb
2 and σo

2 are the background 
and observation error variances, respectively, and σd

2 is the 
innovation variance. Note that Rb = Ro = 1 at r = 0 and Do << 
Db, so sb

2Rb can be estimated from <didj> by the least-
squares fitting over Db > r ≥ Do with sb

2 given by the 
interception of the fitted curve on the vertical coordinate at r 
= 0 according to the first equation in (4).  

In X03 and X05, sb
2 and Rb were estimated by the least-

squares fitting in a single step. This single-step approach 
tends to fit sb

2Rb over the entire range of Db > r ≥ D, so sb
2 is 

not always accurately estimated (by extrapolating the fitted 
curve to r = 0). The refined method estimates sb

2Rb in two 
steps: (i) Estimate sb

2 by fitting a simplified quadratic form 
of sb

2Rb [derived from (3) in the limit of small r] over the 
range of 10 km > r ≥ Do; (ii) Estimate Rb with sb

2 fixed by 
fitting the truncated spectral form of Rb over the full range of 
Db > r ≥ Do. In addition to this two-step approach, the 
innovation data binning strategy is also refined to facilitate 
the observation correlation estimation. In X03, innovation 
data pairs were binned coarsely in the three-dimensional 
parameter space of {r, cos(βi - βj),  cos(βi + βj)}. To enhance 
the computational efficiency, innovation data pairs were 
selected and binned along each beam, each pair of two 
opposite beams, and five selected range circles in X05. Here, 
with the refined binning strategy, innovation data pairs are 
binned in two ways: (i) every range gate spacing (0.24 km) 
along each beam, and (ii) every 1o along each range circle. 

The refined method is applied to 25 volume scans from the 
phased-array radar (2 min per volume from 2100 to 2200 
UTC on 2 June 2004), and the data were processed through 
quality controls (see X05). The background error correlation 
functions estimated here are similar to those in X05, but the 
estimated error variances are somewhat different form those 
in X05. In particular, sb

2 = 0.81 and σd
2 = 81.0 m2s-2 are 

estimated here from innovation data pairs binned along each 
radar beam between 50 km ≤ r ≤ 70 km (over 80 range gates) 
on the lowest tilt (0.75o elevation angle). This gives σb = 8.1 
ms-1 and σo = 3.9 ms-1. These estimates are considered to be 
more accurate than those (σb = 8.4 ms-1 and σo = 2.5 ms-1) 
estimated by the single-step fitting in X05.  

 



The estimated observation error correlation functions are 
plotted in Fig. 2 in comparison with those estimated from the 
NSSL KOUN radar in Xu et al. (2006). As shown, the 
phased-array radar radial-velocity observation errors are 
correlated up to r = 3 km, while the KOUN radial-velocity 
observation errors are correlated only up to 2 km and the 
error standard deviation is only 2.1 ms-1. The differences 
between the two types of observations can be explained in 
terms of instrumentation error and sampling error. First, the 
current phased-array radar at NWRT has less detection 
power and resolution than the KOUN. Limited by the size of 
the antenna, the phased-array radar beam is wider (about 1.7 
degree depending on the viewing angle with respect to the 
antenna facing direction) than the KOUN beam (about 1 
degree). This explains the above differences in terms of 
instrumentation error. Secondly, the phased-array radar 
observations were collected for a squall line on 2 June 2004, 
while the KOUN observations were collected for calm 
weather on 9 May 2004, so the above differences can be also 
partially due to different sampling errors.  

 

 

 

 

 

 

 

 

 

 

Fig. 2. Observation error correlation data points: + for phased-array 
radar, and • for KOUN. Estimated observation error correlation 
functions Rll(r) (blue) and Rtt(r) (red): solid for the phased-array 
radar, and dashed for KOUN. 

5 Summary 

The theoretical analysis in section 2 and the assimilation 
experiments in section 3 suggest that the operational WSR-
88D radar scans may have excessive spatial resolutions (0.25 
km in radial range and about 1o in azimuthal) in radial-
velocity observations even for a storm-scale data 
assimilation system with a resolution of Δx = 2 km. With the 
phased-array radar, the rapid and flexible agile-beam scans 
can be configured adaptively to reduce the spatial resolutions 
and enhance the temporal resolution and/or measurement 
accuracy. This will reduce or eliminate information 
redundancy and enhance the information content.  

In principle, the singular-value form of the relative entropy 
derived in (2) can be used to measure the optimality of radar 
scanning strategy in terms of maximizing the information 
content from observations for a given data assimilation 
system. This problem deserves further investigation, 

especially for practical implementations with an EnKF 
assimilation system.  

The innovation method refined in section 4 can estimate the 
radar radial-velocity observation covariance as well as the 
background wind error covariance. The refined method is 
now being tested with a variety of radar radial-velocity 
innovation data. The method will be further improved, so it 
can take as much as possible the advantages of phased-array 
rapid and flexible scan capabilities to estimate the 
observation and background error covariances in real time 
for phased-array radar data assimilation. 
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