


3 Methodology 

Hydrological models are always simplified representations 
of real systems. Within this study, radar observations 
adjusted to raingauge measurements are assumed to 
represent true rainfall. The radar images have been corrected 
accounting for ground clutter contamination and mountain 
screening effects, Berenguer et al. (2005). The adjustment to 
ground measurements is realised with regard to the areal 
mean of radar images and raingauge observations. Together 
with actual streamflow measurements this rainfall data is 
used to determine ‘true’ parameter values. The model 
provided with ‘true’ parameters and ‘true’ rainfall is 
assumed to be completely deterministic, i.e. truly 
representing the dynamics of the real system. Within this 
framework, error free reference hydrographs are generated 
for a set of rainfall events. For the intended purpose this 
proceeding is adequate in order to cut off disturbances due to 
model structure and errors in observed streamflow data.  

In a next step, simulation runs are conducted for all events 
now using input data obtained from different methods to 
determine areal rainfall. Thus, different degrees of 
uncertainty of the input variable are introduced to the 
system. The computed hydrographs are compared to the 
reference hydrographs and the magnitude and behaviour of 
the produced residuals as defined in (1) are analysed. 

εi = Qiref - Qisim (1)

where 

εi : error in timestep i 

Qiref : reference discharge ith timestep 

Qisim : simulated discharge ith timestep 

According to the definition of errors in (1) positive and 
negative residuals correspond to under and overprediction of 
streamflow respectively. For further analysis of the errors 
time sequence plots (residuals against time) and residuals 
against predictions as proposed by Kuczera (1983) are 
prepared for all sites examined within the basin and at the 
outlet. 

4 Case study  

The study is carried out in the Besòs river basin (1024 km²) 
situated in the North of Barcelona, Spain. The basin is 
characterised by its pronounced topographic relief and 
Mediterranean climate. It is a heterogeneous basin varying 
from forested mountains in altitudes up to 1000 m asl. to 
rural planes which undergo a continuous urbanisation 
process, Corral et al. (2002). Fig. 1 shows the digital 
elevation model of the study area in the used grid resolution 
of 1 km². Flow directions are also included as well as the 
location of evaluation sites marked by the dots labelled in 
small letters. 
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Fig. 1 Study basin, topographic relief, flow paths and evaluation sites 

4.1 Hydrological model 

For the study the distributed Water Balance raster Model 
(WBrM), Klawitter (2006); Lempert (2000) is used. WBrM 
discretises the catchment in square grids which are the 
minimum units to represent spatial heterogeneity. For each 
grid cell vertical (infiltration, percolation, 
evapotranspiration) and lateral (direct runoff, interflow, base 
flow) process rates are determined depending on actual soil 
moisture conditions. The model concept consists of a 
piecewise linear approximation of the basic physical mass 
balance equations based on conceptual approaches, 
Ostrowski (1991). 

4.2 Precipitation Data 

Radar images of the Spanish Weather Service (INM) in a 
spatial resolution of 1 km² and 10 minute intervals are 
available. In addition, there are 41 telemetered raingauges 
within the region reporting in 10 minute intervals, Corral et 
al. (2002). 

4.3 Areal rainfall 

In contrast to the detailed information on spatial distribution 
of rainfall provided by radar images often only point 
observations of rainfall are available in practice. In the 
context of this work, four methods to represent areal rainfall 
based on spatial interpolation of raingauge measurements are 
examined. The first method is based on arithmetic averaging 
which determines a uniform areal rainfall (UNIF). The 
second approach is the widely applied Thiessen Polygon 
Method (TPM). Third, a statistical method, Kriging with 
External Drift as proposed by Velasco-Forero et al. (2005) is 
used (EDK). The fourth method is a mathematical 
interpolation approach based on a spline approximation of 
the different observations (SPLINE). 



5 Results  

A total of five rainfall events simulated in 10 minute time 
steps are examined. The application of interpolation methods 
introduces uncertainty to the input data with regard to the 
total precipitation depth and its spatial variation. The 
comparison of the mean accumulated areal rainfall obtained 
from different interpolation methods shows that UNIF yields 
a (about 7%) lower areal mean and TPM, EDK and SPLINE 
exceed the reference value of true rainfall by 2, 7 and 1 %, 
respectively. The mean squared error of true and interpolated 
rainfall summed over all grid cells indicates the degree of 
deviation from the true spatial rainfall distribution. EDK 
achieves the lowest value. In contrast to its important 
deviation of mean areal rainfall this method seems to 
represent the spatial structure best. TPM and SPLINE yield 
similar but larger values and UNIF produces the largest 
error.  

Taking a hydrological perspective, the simulated 
hydrographs obtained with different input data are 
compared. A deviation of simulated runoff volume at the 
outlet is expected already from the differences of mean 
accumulated rainfall. However, there is no consistent 
relation between over and underestimation of precipitation 
depth and simulated runoff volume. Similar to UNIF, the 
other methods yield lower runoff volumes. It is noteworthy 
that the simulation based on EDK results in the best 
representation of runoff volume although the input data is 
affected by a clear deviation of mean accumulated areal 
rainfall. The methods TPM and UNIF perform poorly in this 
respect as the present error in rainfall depth is inflated to a 
runoff volume error of 10% and 30% respectively. 
Apparently, the realistic representation of spatial distribution 
of rainfall depth and intensity is of great significance for the 
hydrological processes of runoff generation. 

Next, the error structures of the simulated hydrographs are 
examined with regard to the underlying assumptions of LS 
parameter estimation. To this end, time sequence plots of the 
calculated residuals are prepared. In Fig. 2 the temporal 
evolution of the residuals at the basin outlet (evaluation site 
e, see Fig. 1) are exemplary shown for one event. 
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Fig. 2 Time sequence plots of residuals at evaluation site e 

It is apparent that the expectation value of the residuals is 
unequal zero; thus violating assumption II. The positive bias 
is present for all interpolation methods and is in line with the 
underestimation of runoff volume discussed before. Besides, 
a strong autocorrelation of the residuals can be observed 
challenging assumption IV. 

 

Assumptions II and III are checked by means of a plot of 
errors as a function of the predictions. In Fig. 3 the sample of 
errors determined from all events are shown exemplary for 
evaluation site (a). 
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Fig 3. Plots of errors versus predictions, evaluation site a 

Two common features of the error samples can be derived 
from these plots. First, there seems to exist a negative trend 
within the error samples. This trend consists in an increasing 
overprediction of larger discharge values. The observed 
trend reveals a dependence of the errors on the predictions 
suggesting a systematic error in the input data. Second, the 
range of scatter becomes broader for larger discharge 
streamflow values. This increase of error variability 
indicates that the variance of the errors is not constant as 
presumed in assumption II.  

It is interesting to check these outcomes at different sites 
within the basin in order to learn about the spatial variation 
of the errors associated with different interpolation methods. 
This is realised for the evaluation sites a to d which coincide 
with tributaries of different sub basins. Essentially, the 
examination of the error plots reflects the findings as 
discussed above: negative trend and increasing variability of 
errors. However, the slope of the trend varies for the 
different sites examined. This suggests a spatial variation of 
the extent of systematic error present in the input data, i.e. 
the goodness of approximation of the precipitation field 
varies within the basin.  

A distinction has to be made with regard to site c. The 
prediction errors for this sub basin are comparatively small 
and the errors do not exhibit the general trend identified, but 
show a peculiar dependence on predictions for each event 
examined. In contrast to the other sub basins the runoff 
volume at site c is overpredicted for all interpolation 
methods. This quality can be attributed to the fact that the 
precipitation in that area tends to be overpredicted by areal 



rainfall interpolation. As a consequence the errors of the 
remaining tributaries are partially compensated. 

6 Conclusions 

The impact of uncertainties in input data as a result of 
simplified representation of areal rainfall on the errors of 
simulated streamflow has been analysed. The features of the 
produced errors do not comply with the basic assumption of 
LS parameter estimation. Particularly, the errors are not 
independent of each other and depend on the predictions. 
They are systematically biased and the error variance is not 
constant. In addition, the errors show a clear spatial 
variation. From the hydrological evaluation it becomes 
apparent that an accurate representation of spatial rainfall 
distribution is of great importance for the reproduction of 
runoff generation processes and, in turn, for the quality of 
modelling results. 

The error features identified have to be considered in model 
calibration. The following methods are conceivable to 
improve parameter estimates of distributed hydrological 
models. Data transformation is adequate to stabilise the 
observed variation of error variance, autocorrelation of the 
errors can be met with auto regressive time series models (as 
described by Kuczera (1983) and Troutman (1985b)). 
Furthermore, adjustment factors of the input variables can be 
applied to lessen the systematic error, e.g. by multiplication 
of rainfall depths. Also, the spatial variability of the errors 
has to be addressed. A multi-site calibration scheme relating 
to sub-basins based on Multi-Objective Optimisation 
Algorithms (e.g. as presented by Muschalla et al. (2005)), is 
a convenient approach to realise an internal evaluation of 
simulated variables. This calibration concept permits a site-
specific adjustment of parameters, thus lessening 
compensation effects within the basin, as well as a 
consideration of error properties adapted to the particular sub 
basin.  

The results obtained from this study should be confirmed by 
the analysis of more events. Nevertheless, they offer a 
suitable basis to implement and test the impact and benefit of 
the described methods to improve parameter estimates. 
Current research work at IHWB is going on in this direction. 
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