
ERAD  ERAD  20062006Proceedings ofProceedings of

Radar-based quantitative precipitation estimation over arid, semi-
arid and Mediterranean climate regimes in Israel 
 
Efrat Morin1, Marco Gabella2 
1 Hebrew University of Jerusalem, Jerusalem (Israel). 
2 Politecnico di Torino, Torino (Italy). 
 

1 Introduction 
Accurate quantitative precipitation estimation (QPE) is one 
of the most important elements in meteorological and 
hydrologic analyses. It has been long recognized, however, 
that rain gauge networks are usually inadequate because of 
their limited distribution. During the last decades intense 
scientific efforts have been devoted to utilize remote sensing 
information for the estimation of high resolution 
precipitation data over large areas. Ground meteorological 
radar systems are the most common source of this 
information.  
Radar-based QPE are subject to several sources of errors. 
Among them is the effect of topography causing ground 
clutter contamination and beam blockage, especially in 
mountainous regions, beam broadening and its increasing 
altitude above ground with distance, and gradients of vertical 
reflectivity profiles. Several methods were proposed how to 
combine radar and gauge data to generate precipitation 
estimates with reduced levels of error. The simplest approach 
adjusts radar estimates by removing the mean bias (e.g., 
Krajewski and Smith, 2000). For regions with complex 
terrain, Gabella et al. (2000) suggested radar-gauge 
adjustment using the weighted multiple regression (WMR) 
method.  
While a considerable number of papers deal with radar-based 
precipitation estimation in temperate climatic regimes, few 
have covered semi-arid and arid regions (e.g., Morin et al., 
2005). In these dry regions rainstorms are often local and 
highly variable while rain gauge networks are very scarce.     
The objective of the current study is to examine methods for 
radar-based QPE of storm rain depth for Israel, where the 
climate ranges from Mediterranean to semi-arid and arid 
types. This goal is achieved using radar-gauge training and 
validation procedures applied to a five year data record. 

2 Study region 
Israel is located at the southeast corner of the Mediterranean 

Sea between latitudes 29.5-33.5o. 
The rainy season is October-May. 
Israel is characterized by a sharp 
gradient of annual rainfall, from 
more than 1000 mm in the north to 
only 30 mm in the south, all within a 
400 km distance. Israel climate is 
spread over three different regimes 
according to Köppen classification: 
Mediterranean, semi-arid and arid 
(Fig. 1).  
 
  

3 Data and methods  

3.1 Data 
Radar and rain gauge data for the five hydrological years 
1998/1999 – 2002/2003 were analyzed for this study. Data of 
the C-band radar system located at Ben-Gurion airport 
(central Israel) were obtained from E.M.S Mekorot (Fig. 2). 
Radar data resolutions are 5 minutes in time and 1.4ox1 km 
in space (polar coordinates) with radar scans at several 
elevation angles. Gauge daily rain depth data were obtained 
from the Israel Meteorological Service and included 274 
gauges located within the radar coverage that were operating 
during the whole five year period (Fig. 2).   
In the current study, analysis is based on storm rain depth, 
where storms are defined as periods of rainy days separated 
by at least one day with no record of rainfall in Israel. Storms 
with low rain depth (less than 10 mm storm depth) or with 
large radar data gaps (more than 50% of the storm period 
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Fig. 1. Climate classification of Israel 
and surrounding region according to 
Köppen; Mediterranean in white, 
semi-arid in light gray and arid in 
gray. 
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missing) were excluded from the analysis. This procedure 
resulted in a list of 30 storms for the study period. 
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3.2 Radar ground-clutter and beam blockage procedures 
Two major difficulties of radar rainfall estimation in 
mountainous regions are signal contamination by ground 
clutter and radar beam blockage. In Israel the problematic 
regions are the mountain ridge east of the radar (Samaria and 
Judea Mountains) that is heavily contaminated by ground 
clutter and the Jordan Rift Valley east of these mountains 
that is blocked. Additional ground clutter areas surround the 
radar at a distance of 20-25 km.  
The approach taken in the current study to overcome these 
disturbances is to use radar data from spatially-varied 
elevation angles such that the beam centre lays at least a 
whole beam width and additional 500 meters above the 
ground, and has a clear sight from the radar to the test point. 
The computation of the appropriate radar elevation angle 
utilizes the 3 arc sec (about 90 m) topography data of the 
U.S. National Oceanic and Atmospheric Administration and 
it assumes radiation propagation in normal atmospheric 
conditions.  

3.3 Radar-rainfall estimation methods 
Radar rainfall estimation methods examined in this study are 
based on an initial power law transformation as a first step 
and then the derivation of the storm radar-to-gauge ratios to 
correct the initial estimation.  
The initial relation applied is 

                                    5.1316RZ =                                     (1) 
where Z  is the radar reflectivity data [m3mm-6] and R  is rain 
intensity [mm/h]. This relationship was applied in former 
studies, for example Gabella et al. (2001). It should be noted 
that while the exponent parameter in the above relationship 
has some effect on the results, the multiplicative parameter is 
anyhow corrected with the applied factor. A lower threshold 
of 10 dbz (1 dbz = 10Log10Z) for noise filtering is applied 
and an upper threshold of 250 mm/h is applied to prevent 
overestimations caused by wet hail particles in the cloud. 
The upper threshold rain intensity value was selected based 
on rain intensity statistics for several rain stations in Israel. 

Radar rain intensities are integrated for each storm period to 
get initial storm depth estimations over the radar coverage.  
At the second step the storm radar-to-gauge ratio is 
determined for locations with gauge data: 

G
PF

*
=                                      (2) 

where G  is the gauge storm depth and *P  is the initial radar-
rainfall estimation at the radar pixel above the gauge. The 
different methods described below estimate the variability of 
F  in space and its value is derived for the whole radar 
coverage area. The initial radar estimates are corrected by 
applying the derived radar-to-gauge ratios. 
Three methods to estimate variability of F  are examined:  
1) Bulk adjustment (e.g., Krajewski and Smith, 2002): the 
radar-to-gauge ratio is assumed to be uniform over the whole 
study area. It is computed from gauge and radar storm depth 
data for a training data set such that the overall bias is 
removed:   
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                                    (3) 

where N  is the number of storm datum.  
2) Ordinary Multiple Regression – OMR: the radar-to-gauge 
ratio is assumed to vary in space as a function of: distance 
from radar, ground height and latitude. The relationships 
between these variables are obtained by linear regression 
analysis between the dependent variable F  in decibels: 

 FLogFdb 1010=                               (4) 
and the independent variables: 
a) Log of distance from radar in reference to a 60 km 
distance: )60/(10 dLogD = , where d  is distance from the radar 
in km.  
b) Ground height in km above see level: H . 
c) Latitude in degrees with reference to the radar location of 
32oN: 32−= lL , where l  is latitude in decimal degrees.  
The selected reference values (60 km for distance, 0 km for 
ground height and 32o for latitude) do not affect the rainfall 
estimations but only the derived regression coefficients.   
3) Weighted Multiple Regression - WMR: Gabella et al. 
(2001) suggest using weighted regression instead of the 
standard ordinary regression to derive radar-to-gauge ratios. 
This method minimizes the weighted sum of square errors 
instead of the regular sum as in ordinary regression. The 
residuals are weighed according to the physical quantity of 
interest, i.e., rainfall amounts, in hydrological applications. 
There is more than one possibility: the weights can be either 
the radar-derived precipitation amounts or the amount of rain 
measured by the gauges. Furthermore, more meaningful 
results are obtained if the values derived from the sensor that 
has to be adjusted are used for weighting, since the weights 
act as “soft” thresholds in the regression: less importance is 
given to those areas where the sensor is “lacking”. This fact 
has already been observed in similar analyses using non-
linear weighted multiple regressions (Gabella et al., 2000). In 
Gabella et al. (2001) it was shown that the best results are 
obtained when radar-derived rainfall estimates serve as 
weights for the analysis.  

Fig. 2. Rain gauges (filled 
circles) and the five validation 
areas of 20x20 km2 size 
(marked by V1-V5). Radar 
location is marked by a 
triangle and the 100 and 150 
km radiuses are indicated. 



3.4 Training and validation procedures 
Five 20X20 km2 validation areas were defined for the 
analysis (Fig. 2) representing different climate regimes as 
well as areas of interest for hydrological applications. The 
first, V1, contains 10 gauges and is located in a semi-
arid/Mediterranean climate regime within the drainage area 
of Lake Kineret which is the main surface water reservoir in 
Israel. Note that from a QPE point of view this area is “far” 
from the radar (more than 100 km distance). The second 
validation area, V2, with 18 gauges is located in a region of 
moderate topography at about 80 km distance from the radar 
and within the Mediterranean climate regime. The third 
validation area, V3, also Mediterranean in climate, has 12 
gauges but within a complex topographic area with 
elevations between 200-1000 m above sea level. This area is 
of hydrological importance because it is located within the 
recharge area of the mountain aquifer and therefore rainfall 
estimations over these areas are important for groundwater 
models. The fourth validation area, V4, is in a semi-arid 
region with annual rainfall varying between 150-300 mm. 
The specific location of this validation area was selected 
because of the relatively dense network of gauges (5 gauges 
within this area) as opposed to the rest of the semi-arid area. 
The fifth validation area, V5, is an arid region at the northern 
edge of the Dead Sea, with annual precipitation of 100 mm. 
Because of the very sparse rain gauge networks in the arid 
parts of Israel, only one rain gauge exists within this area. 
Gauges within the validation areas are excluded from the 
training procedure. 
Training is done for each storm by computing the radar-to-
gauge ratios according to the above methods based on data in 
the training data set, which is composed from all gauges 
outside the validation areas (228 gauges). Because of the 
ratio and logarithmic operations (see Eq. 3 and 4), only non-
zero gauge and radar storm depth data are processed. The 
radar-to-gauge ratios obtained for the training data sets are 
tested for the validation data sets for the same storm. This 
training-validation scheme represents a situation where 
gauge data are available for the storm (non-real-time 
application). Validation results provide information on the 
accuracy of radar estimates in ungauged areas.  
To quantify the goodness of fit between gauge storm depth, 

iG , and estimated radar storm rain depth, iP  , the following 
scores are used: 

1) Bias:  
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To judge the validation results a reference level of error is 
computed in the form of gauge-only estimation. For each 
gauge in the validation areas, storm rainfall is estimated by 
spatial interpolation of gauge data in the training data set. In 
this work, the Inverse Distance Weight (IDW) method is 
used for the interpolation. If the radar-based estimation 
results in better scores than the estimation based on gauge 

data only, then the radar estimations can be considered 
useful. 

4 Results  

4.1 Case study demonstration 
We first demonstrate the analysis for one case study, the 
storm of 12-17/2/2000. Gauge rain depth for this storm 
ranged between zero to 107 mm with an average and 
standard deviation of 47 and 24 mm, respectively. Table 1 
lists the equations derived for the storm training data set by 
the different estimation methods described above.   
 

Table 1. Derived equations for the training data set of 
the storm of 12-17/2/2000 
Method Equation 
Bulk Adj. 91.5−=Fdb  
OMR LHDFdb 28.383.001.1053.5 −−−−=  
WMR LHDFdb 48.164.016.674.4 −−−−=  

 
All three variables appear with negative coefficients, 
indicating a decrease of radar-to-gauge ratio (i.e., 
underestimation) with increased distance from radar, 
topography height and latitude. Coefficients derived using 
the ordinary regression method are more negative than those 
derived by the weighted regression method, implying lower 
radar-to-gauge ratios and therefore higher rainfall 
estimations using OMR.  
Scores of fit for the training data set are presented in the first 
row of Table 2 (marked by T). As in previous analyses 
(Gabella et al. 2001 Tables 4,5 and 7; Gabella et al. 2000 
Tables  5, 8b and 9), the weighted regression results in a 
better fit in terms of FSE relative to the other methods. 
However, it generally underestimates rainfall depth. The 
ordinary regression, on the other hand, overestimates 
rainfall. By definition, a perfect match between gauge data 
and radar estimates in terms of bias is achieved for the 
training data set using the bulk adjustment method.  
Of more interest is the fit achieved for the validation data set 
(marked by V1-V5 in Table 2). In order to evaluate the 
derived scores, rainfall estimates based solely on gauge data 
were computed (IDW) and their scores of fit are provided in 
Table 2.  
 

Table 2. Scores for training and validation data sets of the storm 
of 12-17/2/2000 
 N Score Bulk Adj. OMR WMR IDW 

Bias 1.00 1.23 0.81  T 194 
FSE 0.85 0.97 0.60  
Bias 0.18 0.67 0.29 0.71 V1 10 
FSE 0.83 0.38 0.72 0.36 
Bias 0.76 1.54 0.88 1.29 V2 18 
FSE 0.39 0.74 0.33 0.71 
Bias 1.62 0.74 0.85 0.74 V3 12 
FSE 1.03 0.48 0.47 0.68 
Bias 1.87 1.52 1.45 2.52 V4 5 
FSE 0.99 0.63 0.56 4.56 
Bias 1.01 0.72 0.67 11.14 V5 1 
FSE 0.01 0.28 0.33 10.14 



As can be seen in Table 2, radar-based rainfall estimations in 
validation area V1 are not as good as those based on gauge 
data only. However, for the other four validation areas, radar 
estimates are better than the gauge interpolation estimates. 
Gauge-based interpolations in the semi-arid and arid areas 
(V4 and V5, respectively) were incorrect because of the 
sparse networks in these areas, while radar-based estimates 
were quite reasonable.  

4.2 Five year analysis – training 
The analysis was applied to the 30 storms in the five year 
record. In most cases coefficients of the ordinary regression 
method are lower than those of the weighted regression 
method and therefore, in general, radar rainfall estimates 
using the ordinary regression method are higher than the 
estimated based using weighted regression. The difference 
between the two methods results in high (low) bias for the 
ordinary (weighted) regression method as can be seen in the 
first row of Table 3. The scores in the table are the weighted 
averages of the thirty storm scores with storm average depth 
as the weighting value. For the training data set, the lower 
weighted score in terms of FSE is obtained for the weighted 
regression method.  
 
Table 3. Weighted scores for training and validation 
data sets for thirty storms 
 Score Bulk Adj. OMR WMR IDW 

Bias 1.00 1.28 0.83  T 
FSE 0.77 1.01 0.53  
Bias 0.28 0.93 0.40 0.76 V1 
FSE 0.75 0.55 0.63 0.39 
Bias 0.89 1.73 0.97 0.97 V2 
FSE 0.34 0.93 0.34 0.40 
Bias 1.08 0.83 0.86 0.89 V3 
FSE 0.66 0.49 0.46 0.62 
Bias 1.00 1.44 1.12 0.88 V4 
FSE 0.21 0.53 0.26 0.73 
Bias 0.78 0.65 0.55 3.45 V5 
FSE 0.36 0.49 0.52 2.46 

4.3 Five year analysis – validation 
Three of the validation areas are located within a 
Mediterranean climate regime (Fig. 2). Weighted scores for 
these areas are presented in Table 3 (V1-V3). As before, 
improvement in terms of FSE relative to gauge interpolation 
is achieved for validation areas V2 and V3, but such 
improvement cannot be shown for area V1. Most probably 
the reasons are the large distance of the V1 area from the 
radar (more than 100 km) and the sufficient gauge 
information to support relatively accurate spatial 
interpolation. For validation area V2 the weighted regression 
method scores the best results from the three radar-estimate 
methods. This method also gives minimal FSE values for 
validation area V3, but, in terms of bias, the bias adjustment 
method is somewhat better.  
The improvement of rainfall estimates using radar data is 
most pronounced for the two dry validation areas, V4 (semi-
arid) and V5 (arid), as can be seen in Table 3. The best 
results were obtained with the bias adjustment method. 

Comparison of gauge rain depth and the estimated rain depth 
based on the different methods is presented in Fig. 3. 
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5 Summary and conclusions  
The analysis presented here suggests that rainfall estimates 
based on radar and rain gauge data are relatively accurate as 
compared to estimates based on gauge interpolation. The 
benefits of using radar data was demonstrated for validation 
areas in Mediterranean, semi-arid and arid climate regimes 
that were less than 100 km distant from the radar system. 
Minimal errors, 30-50% on average, were obtained by the 
weighted regression method for the Mediterranean climate 
areas. It should be noted, however, that this method often 
underestimates rainfall. For the semi-arid and arid climatic 
regimes the standard bias adjustment method resulted in the 
lowest level of error, 20-30% on average. It is interesting to 
note that in such areas, because of a paucity rain gauge data, 
a high level of errors were obtained applying a gauge 
interpolation estimation method.   
The application of the training-validation procedure used 
here is for situations where gauge data are available for a 
storm but where rainfall estimations are required for 
ungauged areas. A different situation is provided by real-
time radar rainfall estimation, where gauge data are often not 
available for a current storm but only for past events. This 
issue is currently being investigated.    
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Fig. 3. Comparison of observed (gauge) and estimated (radar or gauge 
interpolation) storm rain depth for a) the semi-arid validation area 
(V4), and, b) the arid validation area (V5). 


